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Data is the cornerstone in multimodal ML

Website  /  Arxiv  /  Code

•Prior works distill each class separately [2, 3]. 
•We distill vision-language datasets that lack discrete classes.

•Low-rank adaptation matching: makes it computationally 
feasible for training with more complex models (e.g., ViTs).

How can we distill the most critical information 
from vision-language datasets?

•Heavy computational cost

Bi-trajectory Guided Vision-Language Co-Distillation

Results

•With and without LoRA on ViT

Research Question

Distilled Examples & Ablations

Distilled examples: (left: before, right: after)

Stage 1 Expert training

•Different vision encoders

(Here we only report R@1)

•Single-modality vs. multi-modality

Takeaway: Distillation would be impossible 
if we solely optimize one modality.

T: text-only, I: image-only

•Image-Text Pair Initialization

image component plays a more critical role 
in the distilled dataset.

Takeaway:  
✅ Initializing texts from scratch 
❌ Initializing images from scratch

Increasing learning rate will change images more noticeably in 
distilled datasets but doesn't lead to performance improvement.

Data = Information + Irrelevant Data [1]

•Bi-trajectory matching: Separately considers two trajectories 
to capture complex vision-text interactions via contrastive loss.

•Text distillation: use continuous sentence embeddings to 
overcome the difficulties of optimizing discrete text directly.

•Cross-architecture generalization

Stage 2 Distillation 
•Training student models on current distilled 

dataset                            with contrastive loss.  
•Update the current distilled dataset based on the 

bi-trajectory matching loss of the student models’ 
parameter trajectories and the expert trajectories.

•Vision-language datasets have been growing increasingly large, 
reaching millions or even billions of samples. 

•The vision-language pairs are often excessively noisy and complex.

Training multiple models for T epochs on the full dataset D. 
Obtaining expert training trajectories                       .

•Baseline comparisons

Random (R), Herding (H),  K-center (K) Forgetting (F)
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•Different language encoders
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