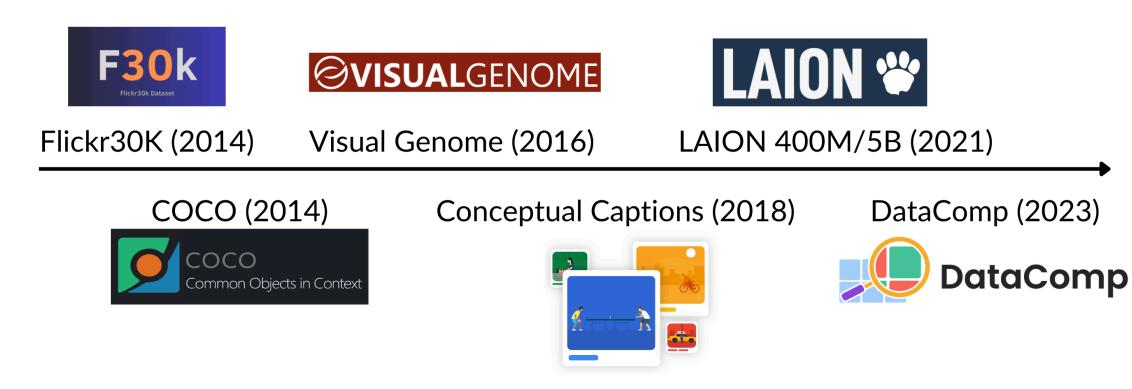


Vision-Language Dataset Distillation

Xindi Wu¹, Byron Zhang¹, Zhiwei Deng², Olga Russakovsky¹ ¹Princeton University, ²Google Research xindiw@princeton.edu X @cindy x wu

Website / Arxiv / Code

Data is the cornerstone in multimodal ML



• Vision-language datasets have been growing increasingly large, reaching millions or even billions of samples.

• The vision-language pairs are often excessively noisy and complex.

Data = Information + Irrelevant Data [1]

Research Question

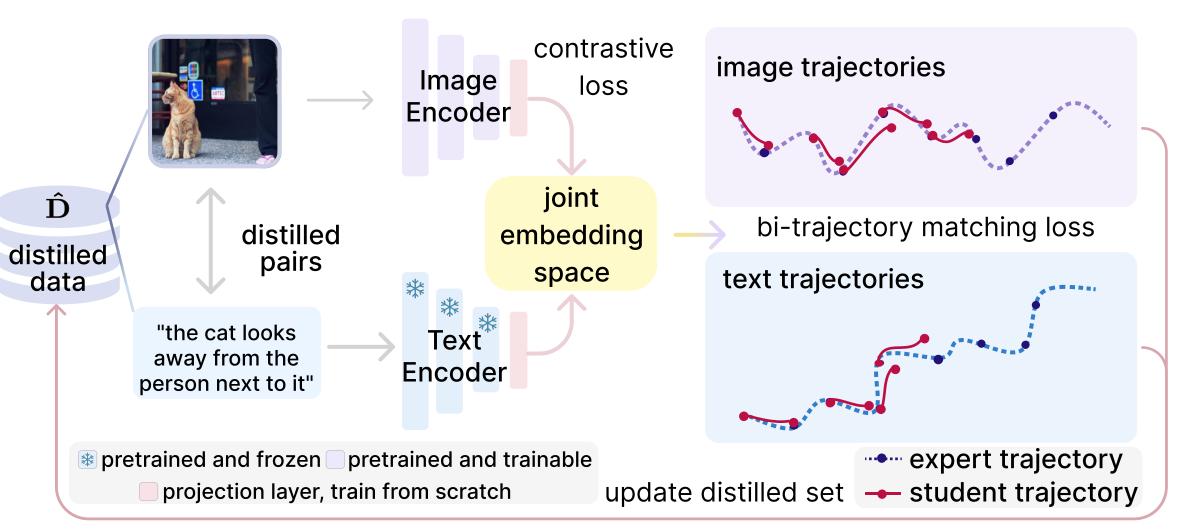
How can we distill the most critical information from vision-language datasets?

Ima	ge-Label	🕂 Vision-Language				
labels	distilled images	E distilled text embeds	distilled images			
"cat" —		"a cat figurine set in the bathroom by a toilet"				
"dog" —		"brown dog running through shallow water"				
"bird"		"surfer surfing in a beautiful with birds around and waves with beautiful texture				

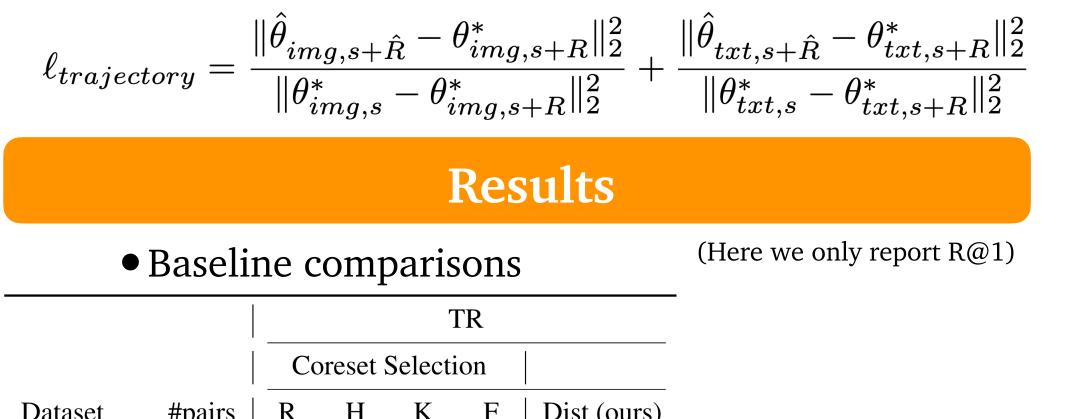
• Prior works distill each class separately [2, 3].

• We distill vision-language datasets that lack discrete classes.

• Heavy computational cost



• **Bi-trajectory matching**: Separately considers two trajectories to capture complex vision-text interactions via contrastive loss.



- Low-rank adaptation matching: makes it computationally feasible for training with more complex models (e.g., ViTs).
- **Text distillation**: use continuous sentence embeddings to overcome the difficulties of optimizing discrete text directly.

Stage 1 Expert training

Training multiple models for T epochs on the full dataset D. Obtaining expert training trajectories $\tau^* = \{\theta_t^*\}_{t=0}^T$.

Stage 2 Distillation

- Training student models on current distilled dataset $\hat{\mathbf{D}} = \{(\hat{x}_j, \hat{y}_j)\}_{j=1}^M$ with contrastive loss.
- Update the current distilled dataset based on the **bi-trajectory matching loss** of the student models' parameter trajectories and the expert trajectories.

Distilled Examples & Ablations

<u>Distilled examples:</u> (left: before, right: after)

Dataset	npans		11	IX	I	
Flickr30K	100	1.3	1.1	0.6	1.2	$\textbf{9.9}\pm\textbf{0.3}$
COCO	100	0.8	0.8	1.4	0.7	2.5 ± 0.3

Random (R), Herding (H), K-center (K) Forgetting (F)

• With and without LoRA on ViT	ר
--------------------------------	---

		Withc	out LoRA	With LoRA	
Dataset				TR	
Flickr30K	100 1000	1.5	0.6	10.4 15.8	5.4
THERIJUK	1000	3.3	1.5	15.8	8.1

Evaluate

NFNet

NF-ResNet50

NF-RegNet

ViT

Distill

NFNet

Different vision encoders				
Vision Model	TR	IR		
NFNet	9.9	4.7		
VIT_LoRA	10.4	5.4		
NF_ResNet50	6.5	3.46		
NF_RegNet	7.8	3.28		

IR

4.7

17.1

Οı

TR

9.9

31.4

a newly married a couple kissed in front couple sharing a of a beautiful threekiss in front of a tiered cake with blue convertible

a man in a black wet a man surfs over suite is surfing a a huge wave in huge wave in the the ocean ribbon and pink accents beautiful blue water

Increasing learning rate will change images more noticeably in distilled datasets but doesn't lead to performance improvement.

• Single-modality vs. multi-modality

			T: text-only, I: image-only		
	TR	IR			
Т	1.3	0.5	Takeaway : Distillation would be impossible if we solely optimize one modality.		
I	3.5	1.6	if we solely optimize one modality.		
urs	9.9	4.7	image component plays a more critical role		
			in the distilled dataset.		
r	т , т	` ' т	• . • 1• •		

[1] Wright, John, and Yi Ma. High-dimensional data analysis with low-dimensional

Language Model

BERT

CLIP

models: Principles, computation, and applications. Cambridge University Press, 2022. [2] Cazenavette, George, et al. "Dataset distillation by matching training trajectories." CVPR 2022.

TR

9.9

5.2

3.6

3.1

• Cross-architecture generalization • Different language encoders

IR

4.7

4.5

2.5

2.3

[3] Deng, Zhiwei, and Olga Russakovsky. "Remember the past: Distilling datasets into addressable memories for neural networks." NeurIPS 2022.

This material is based upon work supported by the National Science Foundation under Grant No. 2107048 and No. 2112562.

• Image-Text Pair Initialization

Real Image	Real Text	TR	IR	Takeaway:
\checkmark	\checkmark	0.4	0.1	 Initializing texts from scratch Initializing images from scratch
\checkmark	\checkmark	9.9	4.7	